Online 3D printing service
Get instant online quotes on parts in over 80 metal and plastic materials. Free shipping on all US orders. ISO 9001:2015, ISO 13485 and AS9100D certified.

Start A New 3D Printing Quote

STEP | STP | IGES | IGS | SLDPRT | 3DM | SAT | X_T | IPT files and more!

Privacy: All your files are secure with us. Read our privacy policy.

What is FDM 3D Printing?

Fused Deposition Modeling (FDM) is an additive manufacturing technology widely known for its speed, accuracy, and competitive cost. FDM machines precisely extrude melted material to create a part. FDM parts can be made in as fast as one day.

Xometry's FDM 3D printing service offers large build volumes up to 24″ x 36″ x 36″ on Stratasys Fortus platforms. FDM 3D printing offers the largest variety of colors and selection of production-grade thermoplastics of any 3D printing process. Material range from general-purpose ABS or ASA to high performing polycarbonate and heat resistant ULTEM.

Fused Deposition Modeling 3D Printing Materials

Fortus FDM Materials Available at Xometry

Material NameColor(s)Tensile Strength, Yield (XZ MPa-ZX MPa)Elongation at Break (XZ%-ZX%)HDT @ 66 psi (°C)Data Sheets
Material Name

ABS-M30

Color(s)

Black, Blue, Dark Grey, Ivory, Red, White

Tensile Strength, Yield (XZ MPa-ZX MPa)

32 MPa-28 MPa

Elongation at Break (XZ%-ZX%)

7%-2%

HDT @ 66 psi (°C)

96 °C

Data Sheets
Material Name

ABS-ESD7

Color(s)

Black (electrostatic dissipative properties)

Tensile Strength, Yield (XZ MPa-ZX MPa)

36 MPa

Elongation at Break (XZ%-ZX%)

3%

HDT @ 66 psi (°C)

96 °C

Data Sheets
Material Name

ABSi

Color(s)

Translucent Natural, Translucent Amber, Translucent Red

Tensile Strength, Yield (XZ MPa-ZX MPa)

37 MPa

Elongation at Break (XZ%-ZX%)

4.4%

HDT @ 66 psi (°C)

86 °C

Data Sheets
Material Name

ASA

Color(s)

Black, Dark Blue, Dark Gray, Light Gray, Green, Ivory, Orange, Red, White, Yellow

Tensile Strength, Yield (XZ MPa-ZX MPa)

27 MPa

Elongation at Break (XZ%-ZX%)

9%-3%

HDT @ 66 psi (°C)

98 °C

Data Sheets
Material Name

Nylon 12

Color(s)

Black

Tensile Strength, Yield (XZ MPa-ZX MPa)

49.3 MPa-41.8 MPa

Elongation at Break (XZ%-ZX%)

30%-6.5%

HDT @ 66 psi (°C)

91.9 °C

Data Sheets
Material Name

PC-ABS

Color(s)

Black

Tensile Strength, Yield (XZ MPa-ZX MPa)

41 MPa

Elongation at Break (XZ%-ZX%)

6%

HDT @ 66 psi (°C)

110 °C

Data Sheets
Material Name

PC

Color(s)

White

Tensile Strength, Yield (XZ MPa-ZX MPa)

57 MPa-42 MPa

Elongation at Break (XZ%-ZX%)

4.8%-2.5%

HDT @ 66 psi (°C)

138 °C

Data Sheets
Material Name

PC-ISO

Color(s)

Translucent Natural, White

Tensile Strength, Yield (XZ MPa-ZX MPa)

57 MPa

Elongation at Break (XZ%-ZX%)

4%

HDT @ 66 psi (°C)

133 °C

Data Sheets
Material Name

PPSF

Color(s)

Tan

Tensile Strength, Yield (XZ MPa-ZX MPa)

55 MPa

Elongation at Break (XZ%-ZX%)

3%

HDT @ 66 psi (°C)

189 °C @ 264 psi

Data Sheets
Material Name

Prototyping PLA

Color(s)

Black, Blue, Red, White

Tensile Strength, Yield (XZ MPa-ZX MPa)

50 MPa-37 MPa

Elongation at Break (XZ%-ZX%)

2.9%-1.9%

HDT @ 66 psi (°C)

55 °C

Data Sheets
Material Name

ULTEM 9085

Color(s)

Black, Tan

Tensile Strength, Yield (XZ MPa-ZX MPa)

47 MPa-33 MPa

Elongation at Break (XZ%-ZX%)

5.8%-2.2%

HDT @ 66 psi (°C)

153 °C

Data Sheets
Material Name

ULTEM 1010

Color(s)

Amber (Natural)

Tensile Strength, Yield (XZ MPa-ZX MPa)

64 MPa-41 MPa

Elongation at Break (XZ%-ZX%)

3.3%-2.0%

HDT @ 66 psi (°C)

216 °C

Data Sheets

Prototyping PLA

We’ve expanded our available materials to include Prototyping PLA, a low-cost, rigid thermoplastic produced via Fused Filament Fabrication (FFF) using an array of desktop 3D printers.  PLA comes in four colors: black, red, white, and blue. PLA is great for developing concept models or low-wear indoor products.

Because of lower overhead and material costs, PLA is typically less than half the price of our other FDM options. In exchange, there are trades offs with a lower heat-deflection (130°F compared to 186-420°F), lower print volume (~9” max dimension compared to 36”), and fewer plastic options. Keeping that in mind, PLA prints have clean finishes, vibrant colors, and quick lead times.

FDM Applications

Concept Models

The speed and versatility of FDM lets engineers create physical snapshots of their designs.

Rapid Prototyping

An FDM machine can be used to create durable prototypes that withstand thermal, chemical, and mechanical stress.

Manufacturing Tools

High-performance materials make FDM ideal for producing jigs, fixtures, and production tooling.


Benefits of Fused Deposition Modeling (FDM)

Precision
+
Strength
+
Large Build
+
Rapid Turnaround
+
Real Thermoplastics
+
Part Production
+

FDM General Tolerances

General Tolerances for FDM 3D Printing
Tolerance NoteDescription
Tolerance Note

General Tolerance

Description

single build layer thickness for the first inch and .002 for every inch thereafter.

Tolerance Note

Build Size

Description

Up to 24" x 36" x 36"

Tolerance Note

Layer Height, less than 16"

Description

0.010" Layers (0.008" for PLA)

Tolerance Note

Layer Height, greater than 16" (up to 36")

Description

0.013" Layers

Tolerance Note

Minimum Wall Thickness

Description

0.047"(less than 16"), 0.060" (greater than 16")

FDM 3D printed parts can be built up to 24" x 36" x 36". Stratasys Fortus 400/450-series machines will produce parts up to 16" and Stratasys Fortus 900MC or F900 platforms are used for parts larger than 16". Prototyping PLA is built on Prusa MK3S/MK4 or Bambu Lab X1C desktop FFF machines with a build volume of 9.8" x 8.3" x 8.3. General tolerances apply before secondary finishing or post-processing unless otherwise specified. To learn more tips about FDM 3D printing, check out our Fused Deposition Modeling (FDM) Design Guide.

An Overview of the FDM Process

How Fused Deposition Modeling Works

With FDM technology, a spool of the chosen feedstock is introduced to a typical fused deposition modeling system via an extruder, which regulates the feed movement of the polymer to the heater where it melts. This molten polymer is extruded through a nozzle and deposited onto the print bed, also known as the build platform. The extruder, heater, and nozzle are all contained in a printhead which is attached to a gantry above the flat build platform. This is designed to offer relatively high freedom of motion in the X and Y axes as the material is deposited.

The fused deposition modeling system uses innovative printer software to separate a 3D computer-aided design (CAD) file into individual slices, or cross-sections. Each slice in the file is converted into machine code, which essentially uses the Cartesian coordinate system to determine the path the printer head must follow across the X and Y axes to deposit the first layer of material onto the build platform. Once the bottom layer is complete, the build platform descends by a small amount – relative to the deposited layer thickness – and the printhead repeats the process to deposit the second layer. This procedure is repeated in sequential layers until the part is finished.

Most FDM systems have a two-nozzle system that can selectively extrude sacrificial support structures as they part prints. Depending on the feedstock, this support may be soluble in a sodium hydroxide (NaOH) bath, leaving only the printed part after processing. The support structure can also be removed manually without damaging the printed part.

The benefits of this technique are manifold, particularly when it comes to the development of concept models and rapid prototypes for research and design (R&D) processes.

Why Use FDM For Your Parts?

Fused deposition modeling (FDM) is among the most easily accessible and recognizable additive manufacturing technologies worldwide. Available to both 3D printing hobbyists and large-volume manufacturers alike, it is known for its speed and precision in generating three-dimensional polymeric structures using a choice of feedstock materials. The range of filaments available for fused deposition modeling include:

Acrylonitrile butadiene styrene (ABS-M30, ABS-M30i, ABSi)

Acrylonitrile styrene acrylate (ASA)

Polycarbonates (PC, PC-ABS and PC-ISO)

High-performance plastics (PPSF, Ultem 1010, Ultem 9085, and Nylon-12)


Benefits Of Fused Deposition Modeling

FDM printing is a cost-effective additive manufacturing process, especially for rapid prototyping or low-volume production. Since FDM prints require little post-processing and use more readily available materials, leads times from quote to print and delivery are fast.

Why Choose Xometry for FDM 3D Printing?

Endless Options

Choose from millions of possible combinations of materials, finishes, tolerances, markings, and certifications for your order.

Easy to Use

Get your parts delivered right to your door without the hassle of sourcing, project management, logistics, or shipping.

Vetted Network

We are ISO 9001:2015, ISO 13485, and AS9100D certified. Only the top shops that apply to become Suppliers make it through our qualification process.